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In this manuscript we report spectral and photophysical parameters of 4-amino salicylic acid in protic
polar and less polar aprotic polymer matrices. Dual emission is observed in both the polymers. The band
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appearing at longer wavelengths (B band) is attributed to excited state intramolecular proton transfer
(ESIPT) whereas the band around 330 nm (U band) is due to those conformers, which fail to undergo
ESIPT. We attribute the difference in spectral behaviour in these polymers to the simultaneous presence
of different neutral/ionic species, free volume and polarity effects.

© 2010 Elsevier B.V. All rights reserved.
SIPT
olymer

. Introduction

Excited state intramolecular proton transfer (ESIPT) is one of the
ost studied excited state chemical reactions, which, in general, is

hought to be extremely fast (taking place in tens or hundreds of
emtoseconds) [1–3]. In general, a large Stokes shifted emission
and is a signature of ESIPT reaction [4–11], which controls the
unctioning of various biological systems [7–10]. Recently, the role
f dyes showing ESIPT has been demonstrated in some polymers
or their use as polymer host lasers [12,13], photostabilizers [14],
hotochromic materials [15,16] and luminescent solar collectors
17,18]. Moreover, these systems have also been projected to be
seful in developing sensors for temperature [19] and humidity
20] and xerographic toners [21].

Since Weller’s discovery of ESIPT in these molecules [22–24],
alicylic acid (SA) and its derivatives have attracted considerable
nterest in the past [25–50] due to their various projected applica-
ions in the applied field. In the ground state, SA and its derivatives
re present as two rotamers P and R (Scheme 1) [25,26]. Rotamer P
s more stable than R [25] due to stronger intramolecular hydrogen
ond. Excitation of rotamer P in the gas phase and in non-polar sol-
ents gives rise to an ultrafast excited state intramolecular proton

ransfer (ESIPT) from the hydroxyl to the carboxyl group resulting in
he formation of the tautomeric (T*) form (∼60 fs in case of methyl
alicylate (MS) [1]). This accounts for the large Stokes shift of SA
uorescence and its derivatives (�em ≈ 440 nm) [25–35]. Rotamer

∗ Corresponding author. Tel.: +91 79 2396 2099.
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oi:10.1016/j.jphotochem.2010.09.005
R cannot undergo ESIPT and has normal fluorescence band with
maximum at ∼330 nm [25,26].

In protic polar solvents, such as water and ethanol, the fluo-
rescence band maximum of SA and its derivatives moves to shorter
wavelengths (∼410 nm). This is accompanied by an increase in life-
time (1 to 6–8 ns) and fluorescence quantum yield [33,35]. Various
neutral and ionic species have been identified in solutions [35].

Though SA and MS have been investigated extensively, the
photophysics/photochemistry of substituted derivatives have been
studied to somewhat lesser extent [37–50]. Particularly the study
of 4-amino salicylic acid (4-ASA) and its esters has been con-
fined mainly to solvents [41–45] and appears quite interesting.
Kim and Yoon [44] observed that the fluorescence characteris-
tics of 4-ASA are affected by varying the concentration of the
solute molecule. Further, they observed dual emission at 330 nm
and 440 nm in nonpolar aprotic solvents and have attributed it
to the emission from the locally excited (LE) molecule and ESIPT
states of the normal molecule. In nonpolar aprotic solvents, ESIPT
as demonstrated by the large Stokes shift results in emission
around 440 nm. However in aprotic polar solvents the large Stokes
shifted emission band becomes broadened, indicating existence
of another emission band probably originated from intramolec-
ular charge transfer (ICT) [42,44]. These results are interpreted
in terms of normal, twisted intramolecular charge transfer (TICT)
and ESIPT fluorescence in aminosalicylates [42] and ESIPT coupled
with charge transfer in 4-ASA [44]. In methanol it was suggested
[44] that with increase in concentration an open intermolecu-

larly hydrogen bonded conformer is formed which fails to undergo
ESIPT.

Recently, study regarding the effect of amino group (–NH2) sub-
stitution at 4th and 5th position on photophysical/photochemical
properties of salicylic acid was done [45] and it was observed that

dx.doi.org/10.1016/j.jphotochem.2010.09.005
http://www.sciencedirect.com/science/journal/10106030
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Scheme 1.

n aqueous solution, amino substitution at 4th-position does not
ead to dual emission, unlike 5-ASA. However, normal and large
tokes shifted emission bands in 5-ASA are attributed to emission
rom the excited state tautomers of ground state zwitterion and
nion, respectively.

It is evident from the above discussions that most of the flu-
rescence studies of 4-ASA undertaken so far are focused on the
olution phase. The photo-induced excited-state relaxation pro-
esses in various polymers are useful for studying different specific
nteractions between solute and host polymers as it has been found
hat the photophysics and photochemistry of excited molecules
re affected due to various polymer microenvironmental effects
51–55]. In fluid media, the fluorescence occurs at the same wave-
ength irrespective of the excitation frequency because of the fast
elaxation time (�r) in comparison with the excited state lifetime
�f), and a dynamic equilibrium exists among these solvation sites.
n rigid media, however, the dynamic equilibrium among differ-
nt solvation sites is lost and emission occurs from the Frank
ondon (FC) state that corresponds to the specifically excited
olvation site, because the relaxation rate constants of different
olvation sites are different. This leads to excitation wavelength
ependence of fluorescence parameters [54]. Fluorescent probes
ave been used to observe orientation, rotational motion, confor-
ational changes, diffusion of polymers, micro-polarity, micro-

iscosity, free-volume, Young’s modulus, hydrophobicity, etc.
53–59].

In view of the above we undertook a systematic study of the fluo-

escence 4-amino salicylic acid (4-ASA) in polar protic polymer poly
inyl alcohol (PVA) and less polar aprotic polymers poly methyl
ethacrylate (PMMA) and cellulose acetate (CA) and have explored

he presence of various species/phenomena that contribute to the
bserved spectral features.

n
/\/\/\/\/\/\/\/\/\/\/\/\/\/\ C C

H

H H

O H

PVA
O

/\/\/\/\/\/\/\ C

H

H

PMM

Scheme
tobiology A: Chemistry 216 (2010) 51–58

2. Experimental

2.1. Materials and polymer film preparation

4-ASA (obtained from Aldrich) of 98% purity was tested for
its fluorescence purity and used as such. All the polymers were
purchased from Sigma–Aldrich, India. All the solvents used were
either of spectroscopic grade or were checked for their fluores-
cence purity. 4-ASA doped CA films were prepared by dissolving CA
(average molecular weight 30,000) powder in acetone and mixing
it with the desired concentration of 4-ASA in acetone. The resultant
mass was spread in polypropylene dish to obtain the film. 4-ASA
doped PMMA films were prepared by dissolving PMMA (average
molecular weight 2,00,000) grains in ethyl acetate (EA) and mix-
ing it with desired concentration of 4-ASA in EA. The films were
again obtained by drying the mass in polypropylene dish. 4-ASA
doped PVA films were prepared by mixing PVA (average molecu-
lar weight 1,25,000) grains with desired amount of 4-ASA in water.
This mass was spread in polypropylene dish and was dried in an
incubator. All the films were prepared for four concentrations, i.e.,
0.01 wt%, 0.025 wt%, 0.05 wt% and 0.1 wt%. The average thicknesses
of the polymer films were around 0.2 mm. The molecular structural
formulae of different polymer matrices viz. PVA, PMMA and CA are
shown below as Scheme 2.

2.2. Instrumentation

Steady state absorption spectra, at room temperature were
recorded by dual beam JASCO V-550 spectrophotometer. The
excitation and emission spectra were recorded by using JASCO
FP–777 spectrofluorometer and data were analyzed by related
software. Fluorescence decay curves were obtained by using
time-correlated, single-photon counting (TCSPC) setup, coupled
to a micro-channel plate photomultiplier (Hamamatsu, R3809U).
Tsunami mode locked picosecond laser was used as the excitation
source. Pulse width of the mode locked Tsunami laser is <2 ps which
operates at 82 MHz, and the time per channel was 0.049 ns. The
samples were excited at 295 nm and the fluorescence decay emis-
sion was collected by a monochromator at respective wavelengths
with a collection bandwidth of 10 nm. A cut-off filter was used to
prevent scattering of the excitation beam from the samples. The
number of counts in the peak channel was at least 10,000.

Time-resolved fluorescence decay curves were analyzed by
deconvoluting the observed decay with the instrument response
function (IRF) to obtain the intensity decay function represented as
a sum of discrete exponentials:

I(�, t) =
∑

i
˛i e−t/� i

where I(t) is the fluorescence intensity at time t and ˛i is the ampli-∑
3. Results and discussion

The steady state and time domain parameters of 4-ASA in dif-
ferent polymers are given in Tables 1 and 2, respectively.

OMe

n
/\/\/\/\/\/\/\C

H

A

cellulose

O

n
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CA
CH3O

2.
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Table 1
Spectral parameters of 4-ASA in protic and aprotic polymers for different concentrations.

Polymer Conc. (wt%) O.D. �ab (nm) �em (nm) (�ex = 300 nm) Stokes shift (cm−1)

PVA
0.05 0.628, 0.445 271, 302 330, 410 2900, 8800
0.025 0.528, 0.354 271, 301 330, 410 2900, 8800
0.01 0.016, 0.014 269, 301 330, 410 2900, 8800

PMMA
0.05 0.642, 0.617 282, 305 331, 440 2600, 10059
0.025 0.492, 0.481 282, 304 331, 440 2700, 10167
0.01 0.018, 0.015 282, 305 331, 440 2600, 10059

CA
0.05 0.672, 0.696 282, 305 337, 435 3100, 9798
0.025 0.522, 0.562 282, 305 337, 435 3100, 9798
0.01 0.024, 0.022 282, 304 337, 435 3200, 9905

Table 2
Decay data of 4-ASA (0.25 wt%) in protic and aprotic polymers at �ex = 295 nm.

Polymer �em �1 (ns) �2 (ns) �3 (ns) �2
2 �2

3

PMMA
340 7.8 (6.2) 1.1 (63.2) 0.16 (30.6) 5.40 1.11
400 3.0 (11.0) 1.1 (53.8) 0.47 (35.2) 2.71 1.01
500 – 1.5 (33.4) 0.59 (66.6) 1.02 –

CA
340 11.3 (7.7) 1.1 (58.5) 0.38 (33.8) 6.32 1.07
400 4.9 (17.0) 1.4 (41.5) 0.54 (41.5) 3.91 1.02
500 – 1.4 (49.4) 0.50 (50.6) 1.04 –

340 2.8 (14.6) 1.4 (51.2) 0.58 (34.2) 2.31 1.13
.4 (40
.8 (38

C e expo

3
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rable to that of methanol (ET(30) = 55.5) [57]. In analogy with SA we
PVA 400 2.6 (15.0) 1
500 7.9 (24.4) 2

orresponding amplitudes are given in parentheses. �2
2 and �2

3 are for two and thre

.1. Protic polar polymer

In PVA, 4-ASA (0.025 wt%) shows two absorption bands at
270 nm and ∼301 nm (Fig. 1). Within our experimental limits,
bsorption spectrum (as shown in Table 1) does not significantly
hange upon changing the solute concentration, unlike in polar
olvents, e.g., methanol [41]. It can be mentioned here that in
he concentration range (0.01–0.1%), taken in the present study,
here is no evidence of dimers in the steady state spectra of 4-
SA. On excitation with �ex = 300 nm, dual emission (Fig. 1) with a

arge Stokes shifted emission (Blue, B band) at 410 nm is observed
long with a normal emission band at 330 nm (ultraviolet, U

and). The Stokes shifts for U and B bands with respect to the

onger wavelength absorption band are 2900 cm−1 and 8800 cm−1,
espectively (Table 1). However, the B band has a maximum at sig-
ificantly longer wavelengths as compared to that observed in basic

ig. 1. Absorption and emission spectra of 4-ASA (0.25 wt%) in neat (a), basic (b)
nd acidic (c) PVA.
.3) 0.70 (44.7) 1.87 1.15

.3) 0.99 (37.3) 3.20 1.21

nential fits, respectively.

methanol, at low concentrations in methanol/ethanol and water
[43–45].

The excitation spectra monitored at different emission wave-
lengths are given in Fig. 2. When excitation spectrum is monitored
at �em = 330 nm, only a single excitation band appears at 290 nm
(Fig. 2b). While at �em = 412 nm, two bands appear at 273 nm and
305 nm (Fig. 2a), and excitation spectrum begins to look like absorp-
tion spectrum beyond this emission wavelength.

It can be noted here that in methanol, its parent molecule SA has
been found to be present in the form of monoanion as well neutral
species [35]. Moreover, the polarity of PVA (ET(30) is 51.9) is compa-
can expect that in PVA also both neutral and anionic species should
be present. To confirm this we checked the spectra in basic as well as
acidic PVA by adding a few drops of NaOH and H2SO4 (Figs. 1 and 3).

Fig. 2. Excitation spectra of 4-ASA (0.25 wt%) for (a) B band (412 nm) and (b) U band
(330 nm).
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ig. 3. Excitation spectra of 4-ASA (0.25 wt%) for B band (440 nm) in basic (a) and
cidic (b) PVA.

t can be seen that in the presence of OH−, the absorption spec-
rum remains almost unchanged (Fig. 1b) and the emission (Fig. 1b)
hows a single band at 410 nm with structure around 390 nm. In
cidic PVA, on the other hand, the absorption spectrum is differ-
nt from neat as well as basic PVA as only a single absorption band
Fig. 1c) appears at 270 nm only, while the emission (Fig. 1c) is
bserved at ∼440 nm (B band) and U emission is not observed. It can
e suggested here that the B band observed at 410 nm in neat PVA
hould be because of overlapped emissions from neutrals (proba-
ly hydrogen bonded rotamers (P)) and anions [35] contrary to the
uggestion of Kim and Yoon [44] that it originates only in neutrals.
nterestingly in the presence of base, appearance of a pronounced
houlder around 390 nm shows that more anions should be present.
owever, unlike in case of aqueous solution [45], both neutrals and
nions are present in PVA even in the presence of base, which indi-
ates that all the 4-ASA molecules may not be exposed to the base
n this matrix. The absence of 340 nm band in basic as well as acidic
VA points that the R type of conformers may be less in number in
hese environments.

The excitation spectra (Fig. 2) suggest that U band should orig-
nate from R type of conformers, which do not have appropriate
ydrogen bond for undergoing ESIPT and hence show normal
tokes shift. Emitting species (ionic and neutral) present in protic
VA polymer are shown in Scheme 3.

The B band at 440 nm (observed in acidic PVA, Fig. 1c), of course,
hould come from fast ESIPT reaction in P type of conformers. How-
ver, the band at 410 nm in neat and basic PVA can be attributed to
he overlapped emission from anion and neutral species (rotamer
), which undergo ESIPT. This is evident from the excitation spectra

lso (Fig. 3). Thus, the U emission unambiguously can be attributed
o R type of conformers. This also is in disagreement with the sug-
estion of Kim and Yoon [44] that the UV band is due to the LE
tate of the P type of conformer. Had it been from LE state of P,

NH2
O

OH

O

H
NH2

              Rotamer P                                    Rotamer

Scheme
Fig. 4. Emission spectra of 4-ASA (0.25 wt%) in PVA at different excitation wave-
lengths.

the excitation spectra would have been identical for both UV and B
emissions.

Moreover, the excitation spectra are quite different for
acidic/basic PVA (Fig. 3). For acidic PVA, the spectrum shows only
band around 305 nm unlike for basic PVA where two bands are
evident. Again this behaviour can be due to increased neutrals in
presence of acid.

Interestingly emission spectra are also found to be dependent
on excitation wavelength. Fig. 4 shows the emission spectra of 4-
ASA monitored at different excitation wavelengths. On excitation
at the red edge of the first absorption band, emission maximum of
the B band shifts to the longer wavelength side. This phenomenon
is termed as red edge excitation (REE) or edge excitation red shift
(EERS).

EERS observed for 4-ASA can be interpreted due to different
conformers trapped in different geometries. In a fluid medium
these conformers interchange rapidly, however, in rigid medium
the conformers are trapped in certain geometric configurations.
The viscosity required to trap different conformers depends on the
structure of the molecule and the amount of free volume in the
matrix [54,55]. As PVA has less free volume [55], one can expect
EERS effect in this matrix.

The time domain measurements (Table 2, Fig. 5) show that the
decay fits with a triple exponential function throughout the emis-
sion profile. At �em = 340 nm, recovered decay times are �1 = 2.8 ns,
�2 = 1.4 ns and �3 = 0.58 ns (Table 2) whereas at the extreme red
edge of the emission spectra (at �em = 500 nm), the decay compo-
nents are �1 = 7.9 ns, �2 = 2.8 ns and �3 = 0.99 ns. At �em = 340 nm,
the presence of these components can be attributed to the pres-

ence of two neutral (P and R) and ionic species (A) in the overlapped
emission spectrum whereas at �em = 500 nm, only P type of neutrals
are expected to be present (emission from ions may not contribute
at this wavelength). As we did not see any rise time even at 500 nm

OH

O

OH NH2

O
-

O

O
H

 R                                     Anion 

3.
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concentration (not shown). The appearance of the red shifted
ig. 5. Decay curves of 4-ASA (0.25 wt%) in neat PVA (1) instrumental profile and
ecay curves with �ex = 295 nm at �em = 340 nm (2) and 500 nm (3). Residuals and
he �2 values for �em = 340 nm (a) and for �em = 500 nm (c).

tail part of the spectra), an excited state reaction appears to be
nlikely. Of course, a longer decay component (7.9 ns) may origi-
ate from those neutrals, which are linked with hydrogen bonding
o the polymer. At the same time we would also like to mention
hat the presence of three components indicates that data may get
omewhat complicated because of the trapping of neutrals in vari-
us geometries as well as due to the presence of various species in
he polymer. This fact is also corroborated by the fact that EERS is
bserved in the emission.

.2. Aprotic polymers
Absorption spectra of 4-ASA (0.025 wt%) show two absorption
ands at 280 nm and 305 nm in both CA and PMMA polymers (Fig. 6)
nd the absorption appears independent of concentration of solute.

In PMMA, on excitation at �ex = 300 nm, again dual emission
Fig. 6) with a large Stokes shifted emission band at 440 nm (B

ig. 6. Absorption and emission spectra of 4-ASA (0.25 wt%) in CA (a) and PMMA (b)
t �em = 300 nm.
Fig. 7. Excitation spectra of 4-ASA (0.25 wt%) for different emission wavelengths in
PMMA.

band) is observed along with normal emission band at 334 nm (U
band) whereas in CA, the B band shows maximum around 435 nm
(Fig. 6). The Stokes shifts of U and B bands corresponding to their
longer wavelength absorption band in PMMA are 2600 cm−1 and
10059 cm−1 and for CA are 3100 cm−1 and 9798 cm−1, respectively
(Table 1). A small shift in the emission maxima on these two apro-
tic matrices may be due to difference in the respective hydrogen
boding ability of the polymers. It can be noted that unlike PVA, the
B emission is considerably red shifted in these matrices.

In the excitation spectra of 4-ASA in aprotic polymers (Fig. 7),
one can notice two excitation bands (Fig. 7) identical to the absorp-
tion spectrum (Fig. 6) for �em = 440 nm. Akin to PVA, the U and B
bands can be assigned to R and P type of conformers.

Interestingly for �em = 380 nm, a new excitation band appears
around 330 nm in the excitation spectrum (Fig. 7). Moreover, at
320 nm, an isobestic point is observed in the excitation spectra.

The emission spectra corresponding to various excitation
wavelengths are shown in Fig. 8. At longer wavelengths of exci-
tation, 380 nm band is quite prominent. We have also noticed
that the intensity of the 380 nm band is relatively increased with
band in excitation spectra for 380 nm together with its increase
with concentration suggests the presence of aggregates although
they are not evident in the absorption (probably because of their

Fig. 8. Emission spectra of 4-ASA (0.25 wt%) in PMMA for different excitation wave-
lengths.
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ig. 9. Emission spectra of 4-ASA (0.25 wt%) in neat (a), acidic (b) and basic (c) PMMA
t �em = 300 nm.

ess number). In analogy with earlier reports for SA in nonpolar
atrices [27] this band can be attributed to aggregates although

MMA is somewhat polar in nature. It is noteworthy that in polar
VA we did not see this emission, which rules out the presence
f aggregates in polar matrices. However, unlike PVA, EERS is not
oticed in this matrix. This can be attributed to less free volume

n case of PVA as compared to PMMA [55]. It is well known that
maller the free volume, the more will be the EERS [55].

In acidic or basic PMMA, steady state spectrum more or less
emains unaltered (Fig. 9). A notable point is that in acidic medium
band in the emission spectrum (Fig. 9b) becomes structured. It is

ikely that some cationic species may also be present in PMMA in
he presence of acid. However, we did not observe emission due to
nion even in basic PMMA (Fig. 9a). This may probably be due to
ess number of anions in this matrix.
Decay curves for 4-ASA in PMMA are shown in Fig. 10 and
he results are summarized in Table 2. The fluorescence decay for
40 nm fits with a triple exponential function with decay times as
1 = 7.8 ns, �2 = 1.10 ns and �3 = 0.16 ns, respectively (Table 2). At

ig. 10. Decay curves of 4-ASA (0.25 wt%) in neat PMMA (i) instrumental profile and
ecay curves with �ex = 295 nm at �em = 500 nm (2) and 340 nm (3). Residuals and
he �2 values for �em = 340 nm (a) and for �em = 500 nm (c).
tobiology A: Chemistry 216 (2010) 51–58

the extreme red edge of the emission spectra (at �em = 500 nm) the
decay fits to bi-exponential function. The decay component (�2)
remains almost constant in the entire profile. Again at 340 nm (for
�ex = 295 nm) the presence of R and P species can be invoked to
explain the decay data. However, the presence of third compo-
nent in PMMA is somewhat intriguing. It is less polar than PVA
[57,59] and hence presence of anion can be ruled out. The pres-
ence of various trapped species can also be ruled out as EERS is
not observed. The contribution from aggregates is also not possible
because these have considerable red shifted excitation. In view of
this we feel presence of free as well as hydrogen-bonded conform-
ers in this matrix may be responsible for the third component as it
has a hydrogen bond accepting nature.

Increase in the decay time in these polymers as compared to
the fluid solutions [42] indicates that the rigidity of the matrix
decreases the nonradiative transition as in case of salicylic acid (SA)
[35].

Similar trend in decay time results was obtained for another
aprotic polymer CA (Table 2). However, the fluorescence intensity
and magnitude of decay times decrease in the order of CA > PMMA.
The difference in fluorescence parameters probably should be due
to difference in the free volume as well as the binding nature of the
polymer.

However, it is not possible to directly correlate the changes
in spectral as well as decay time behaviour to free volume/glass
transition temperature (Tg) as CA, PVA and PMMA have glass tran-
sition temperatures of 65–68 ◦C, 85 ◦C and 105–114 ◦C, respectively
[60–62]. As the spectral as well decay parameters are not only
dependent on free volume but on the polarity and binding abil-
ity of the polymer also, it is not possible to correlate these feature
with free volume in the case of present study. At the same time we
would like to mention that it will be interesting to see the effect
with polymer having same polarity/binding character but different
glass transition temperatures (by changing pendant groups), e.g.,
PMMA, polyethyl methaacrylate (PEMA) and polypropyl methacry-
late (PPMA) [60,61].

4. Conclusion

The steady state and time resolved spectra of 4-ASA in polymer
matrices reveal some new interesting features. In polar protic PVA,
anion and neutral species (rotamer R and P) are identified. It has
also been demonstrated that the different emission bands origi-
nate from different conformers contrary to earlier suggestions that
these emissions come from the same conformer. In PMMA neu-
tral species (rotamer R and P) are present, which partly convert to
cations in the presence of acid. Moreover, presence of aggregates is
also noticed in less polar polymers. We feel that present study will
have implications in the study of probes for polymers.
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